# Present State of Preparedness for Oil Spill Response in Arctic Waters

Nancy E. Kinner, Ph.D.
Coastal Response Research Center
June 22, 2011

4<sup>th</sup> Symposium on the Impacts of an Ice-Diminishing Arctic on Naval and Maritime Operations



### NOAA's Role in Spills

- Office of Response and Restoration (ORR) in National Ocean Service
- Provide Scientific Support and Services to US Coast Guard during Response
- Natural Resource Trustee
- Natural Resource Damage Assessment (NRDA)
- Restoration



## Coastal Response Research Center (CRRC)

- NOAA ORR and Univ of NH Partnership Since 2004
- CRRC Mission:
- Conduct and Oversee Basic and Applied Research and Outreach on Spill Response and Restoration
- Transform Research Results into Practice
- Serve as Hub for Oil Spill R&D
- Educate/Train Students Who will Pursue Careers in Spill Response and Restoration



#### Focus on Uncontrolled Oil Releases

- Maritime Shipping Accidents
  - Single hulled vessels: freighters and cruise ships
- Oil and Gas Development & Production
  - Platform / Piping
  - Drilling
- Transport of Oil / Gas
  - Piping networks
  - Double hulled tankers/barges











1995-2004 >350 Accidents & Incidents



#### **Conceptual Model of Oil-in-Ice**



Arctic Monitoring and Assessment Programme

AMAP Assessment Report: Arctic Pollution Issues, Figure 10-5







### Weathering of Oil

- Natural Processes
- Function of Environmental Conditions
  - Temperature (H<sub>2</sub>O, Air)
  - Wind
  - Oil Type
  - Currents, Tides





### Weathering Properties at Sea

#### Important for Optimizing Response Operations



### Fate & Behavior of Oil - Modeling

- Models of Oil in Cold and Ice-Infested Waters, In Ice and Under Ice are Rudimentary
- Hampered by Lack of Peer-Reviewed Cold Water and Ice/Oil Behavior Studies
- Need to Link Current 2D Spill Models to Brine Channel Models in Ice, 3D Mixed Layer
- Mass Transfer Models of Dissolution, Food Web Models for Fate



### **Toxicity Rates**

- Acute and Chronic Toxicity
- Species Diversity
- Few Arctic / SubArctic Studies
  - Nominal concentrations issues
  - Complicated by dispersant issues
  - Current Alaskan JIP study
    - Barrow Lab Perkins et al.



### Importance of Species

- Key Natural Resources
  - Role in food web
  - Threatened and endangered species
  - Economic importance
  - Cultural importance
- Arctic Species Are "Living on the Edge" and Changes Are Happening Quickly
  - Confounded by protracted exposure to oil
- Much of This Information is Poorly Known or Controversial for Arctic/SubArctic



### Guiding Concepts I = Complexity

- Arctic Coastal Ecosystem = Complex & Dynamic
  - Action/reaction links
  - Interacting components = Water, Ice, Sediment, Shore, Air, Biota



# Guiding Concept II = Great Variability

- Sea Ice Retreat/Absence = High Temporal & Spatial Variability in Coastal Processes & Human Activities
  - Daily, Monthly, Annually
- Variability in Currents, Wind, Weather, Anthropogenic Activity



# Guiding Concept III = Great Uncertainty

- Poor Baseline Understanding of Arctic Coastal Processes
- Lack of Data with QC
- Exacerbated by Uncertainty about Rate/Scope of Climate Change



### CRRC/NOAA ORR Arctic Initiatives



## Opening the Arctic Seas: Envisioning Disasters and Framing Solutions

- Workshop -March 2008
  - Goal: identify key strategies, actions and research needs so Arctic nations/communities can prepare for and respond to marine disasters
  - Participants: 7 Arctic states/3 indigenous nations, governments, NGOs, academia, private sector
  - U.S. and Canadian Coast Guard, Danish Navy



### CRRC Workshop Key Findings

- 1. Designate ports of refuge
- 2. Control/track vessels
- 3. Strengthen multinational plans or create one Arctic agreement for all responses
- 4. Increase response training/logistical support for all stakeholders
- 5. Increase emergency response assets

- 5. Establish international Arctic response fund
- 6. Expand communications
- 7. Update weather and navigational charts
- 8. Improve ecological baseline information resources at risk
- 9. Research on oil behavior in cold water and spill response technologies



### Opening the Arctic Seas

ENVISIONING DISASTERS AND FRAMING SOLUTIONS

Durham, New Hampshire March 18-20, 2008

#### Report Issued: January 2009















#### What We Need

- More baseline information
- More resources (NOAA has 1 SSC, no Damage Assessment Restoration personnel in Arctic)
- More research on better response approaches and better damage assessment & restoration

Photos Courted of NOAV Department of Commerce and UNH Content of Colorad Fand Octuan Mapping Science party of HEALY 07-03 (Seet) No. ont. John Barmer)









### Oil Spill R&D Funding



Source: US Commission Report, Staff Working Paper 7



# Current Spill Response: Information Management

- Key is Rapid, Informed Decisions
  - Protect human health/safety
  - Consider human dimension issues (e.g., socioeconomic, cultural considerations, subsistence)
- Incident Command Needs Relevant Information in Easily Understandable Format





# Arctic ERMA®: A Step Toward Preparedness

# **Environmental Response Management Application**





### Existing Arctic ERMA® Footprint







#### Goals of Arctic ERMA®

- Represent area of significant activities
- Include international partners
- Integrate other GIS elements
- Leverage existing data/programs
  - Spill Planning Emergency Response and NRDA
- Common Platform specifically focused on spill response
  - Designated Common Operating Picture for Deepwater Horizon spill



### **Arctic ERMA® Next Steps**

- Prioritize data sets identified from April 2011 workshop
- Increase communications with Arctic Communities
  - Access to traditional knowledge
  - Mechanisms in place (i.e., data sharing agreements)
- Training: Drills and user training



# CRRC Arctic Workshop on Natural Resource Damage Assessment (NRDA)

- Past emphasis Has Been on Response to Oil Spills in Arctic
  - Norwegian JIP
  - Coast Guard workshops
  - Industry efforts
- Some on Biological Impacts
  - CRRC JIP on biological effects
  - Shell-led JIP on biological effects



### Impetus for CRRC NRDA Workshop

- Reality #1 = When (NOT IF) Oil Spill Occurs in Arctic
- Reality #2 = Substantial Amount of Oil Will Remain in Environment After Response
  - In spite of technological/equipment advances in response
- Reality #3 = Natural Resource Damage
   Assessment (NRDA) Will Be Initiated as a
   Result of Spill



### Impetus for Workshop

- Reality #4 = NRDA Requires Much Better/ More Complete Knowledge of Arctic Marine Ecosystem Than We Have
- Reality #5 = Must Be Quick Injury
   Assessment and Rapid Implementation of Restoration in Arctic
  - Little Room for Delay Because Arctic Is Ecosystem on the Edge
- Reality #6 = Baseline Is Rapidly Shifting in Arctic Due to Climate Change
  - What is baseline?



### Goals of NRDA Workshop: Apr 2010

- Initiate the Dialogue on Arctic NRDA
  - Among NRDA practitioners
- Identify Data Gaps in Understanding of Resources/Ecology at Risk from Spills
  - Temporal and Spatial
- Develop Rapport Among Stakeholders
  - CRRC's role in bringing everyone to the table
  - Better to initiate dialogue before spills occur





### **Arctic NRDA Workshop Outcomes**

- CRRC Report on Workshop Including Recommendations on R&D and Way Forward http://www.crrc.unh.edu/workshops/nrda\_ arctic/index.html
- Foundation for NOAA's NRDA Planning
- Working Group = Arctic Assessment
  - Continues dialogue
  - Coordinates efforts



### Recommended Next Steps

- Establish a data clearinghouse
- Pre-plan for NRDA, including holding additional workshops
- Develop NRDA protocols and methods
- Identify Arctic restoration options
- Synthesize available baseline data and prioritize data gaps
- Begin/expand sampling for monitoring/reference areas



#### Alaska Joint Assessment Team

- Trustees, potential responsible parties, other interested stakeholders
- Goal: Enhance effectiveness and efficiency of NRDA through development of tools and products
- Objectives:
  - Develop and improve working relationships
  - Identify and address technical challenges of NRDA
  - Promote use of best available science in NRDA
  - Provide relevant guidance on conducting NRDA





### **Human Dimensions of Spills**

- Human Dimension Issues
  - Communication
  - Valuing natural resources
  - Social impacts
  - Subsistence
  - Environmental ethics
  - Organizational (institutional) behavior



## Current Spill Response: Human Dimension

- Indigenous Communities Have Strong Cultural Ties to Subsistence Fishing and Hunting
  - e.g., whales, seals, polar bears, pelagic fish
- Spiritual Oneness with Natural World
- Wealth of Local Knowledge about Coastal Environment
- Some Human Dimensions Research, Especially on Exxon Valdez, But More Needed
  - Arctic focus
  - Tools



### **Arctic Communities Working Group**

- CRRC and NOAA are partnering with Alaska natives to bring all stakeholders in dialog
- Roundtable dialog facilitated by CRRC
- CRRC viewed as independent, honest broker
  - NH not energy producing state
  - Academic: trusted 3<sup>rd</sup> party
  - Reputation for playing this role elsewhere
    - Deepwater Horizon





#### Recommendations/Conclusions

- Preparedness is KEY!!
  - Response and NRDA
- Increased R&D funding fate/behavior, toxicity, ecosystem complexity & baseline
- Incorporate local knowledge & human dimensions
- Increase dialog among all stakeholders



# For More Information www.crrc.unh.edu





### Major Issues from Workshop

- No central database of existing data
- Few long term studies; mostly in summer
- Lacking info on food-web impacts
  - Ice-associated; Marine mammals; Birds
- Basic environmental conditions lacking
- Local/indigenous resources need to be incorporated early and often
- Significant barriers to working in the Arctic
  - Logistics and funding



